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SOLUTION OF THE THERMOELASTICITY PROBLEM

IN THE FORM OF A TRAVELING WAVE AND ITS APPLICATION

TO ANALYSIS OF POSSIBLE REGIMES

OF SOLID-PHASE TRANSFORMATIONS

UDC 536.46+531A. G. Knyazeva

Using the known self-similar solutions of the theory of temperature stresses and thermal theory of
combustion on the basis of coupled models of solid-phase combustion proposed for the description of
various physicochemical transformations, it is shown that the regime of fast (supersonic) solid-phase
transformation (solid-phase detonation) is typical of a reacting medium, as well as the regime of
slow combustion. Partial (exact) integration and transformation of variables allow one to reduce
the systems of equations that describe various solid-phase processes to shock-wave equations having
continuous solutions of the traveling-wave type.

Key words: solid-phase transformations, coupled thermomechanical models, self-similar solution,
combustion, detonation.

Introduction. The self-similar solution of the nonlinear problem of the theory of temperature stresses,
which describes propagation of a wave with a constant profile (shock wave) moving in a nondeformed quiescent
medium, causing deformation of the latter, has been known for a long time [1]. This solution is similar to the
solution of the Burgers equation known in the theory of nonlinear waves. The author of the present work became
interested in solutions of this type in constructing models of solid-phase transformations, which can propagate over
the substance both in the slow and fast regimes.

The regime of solid-phase transformations is known to depend on the hydrodynamic flow pattern. There
exist the thermal and hydrodynamic theories of combustion, which describe these transformations. According to
the thermal theory of combustion, emergence of different transformation regimes can be caused by the presence
of parallel and consecutive stages of chemical transformation, phase transitions, and heat transfer to the ambient
medium, i.e., additional sources and drains of heat.

The studies showed that transformations, which can propagate with different velocities, can be described in
a unified manner on the basis of coupled thermomechanical models. In particular, the regime of fast transformation
in the solid phase for exothermal reactions is typical of the system, as well as the regime of slow combustion (layer-
by-layer self-sustaining transformation). Additional sources and drains of heat lead to the appearance of both fast
and slow regimes.

The properties of self-similar solutions in coupled problems of solid-phase combustion are considered in the
present paper.

1. Basic Equations of the Theory of Temperature Stresses. We write some known relations that
will be required below. The system of equations of the theory of temperature stresses [2] includes the nonlinear
heat-conduction equation

ρcε
∂T

∂t
= −∇ · JT − 3KαTT

∂εkk
∂t

(1)
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and the equations of motion

ρ
∂2u

∂t2
= ∇ · σ̂ + ρF , (2)

where T is the temperature, JT is the heat-flux density vector, u is the displacement vector, t is the time, ρ is
the density of the substance, cε is the heat capacity at constant strain, αT is the linear coefficient of thermal
expansion, σ̂ is the stress tensor, F is the vector of mass forces, K = λ + 2µ/3 is the isothermal modulus of
triaxial compression, λ and µ are the Lamé coefficients, and εij = (∂ui/∂xj + ∂uj/∂xi)/2 are the components of
the tensor of small Cauchy strains. Additional expressions relating the components of stress and strain tensors are
the Duhamel–Neumann relations

σij = 2µεij + δij [λεkk − 3KαT (T − T0)]. (3)

The heat flux is related to the temperature gradient via the Fourier law

JT = −λT∇T, (4)

where λT is the thermal conductivity.
The real process of thermoelastic deformation of a body is irreversible [2], which is caused by the temperature

gradient. There exist various generalizations of the theory of thermoelasticity, including those taking into account
the finite velocity of heat propagation and other irreversible processes. If the heat flux obeys the generalized Fourier
law

JT = −λT∇T − trJ̇T , (5)

where tr is the time of heat-flux relaxation, then Eqs. (1)–(3) and (5) are equations of the so-called generalized
thermomechanics [3], which considers the hyperbolic equation of heat conduction. As a generalization of Eq. (1),
Nikitenko [4] obtained an equation of the form

ρcε
∂T

∂t
= −∇ · JT − T

∂

∂t

(
εkk

∂(Kw)
∂T

)
+QT , (6)

where QT is the density of internal heat sources and w is a function depending on temperature and other thermo-
dynamic variables. This function also enters into the generalization of Eqs. (3):

σij = 2µεij + δij(λεkk −Kw). (7)

Other generalizations based on methods of nonequilibrium thermodynamics are also possible [5].
The simplest classical problem of the theory of temperature stresses is formulated as the problem of a thermal

shock on the surface of a half-space free from the action of mass and external mechanical forces. At the time t = 0,
the temperature of the ambient medium (or solid body surface) changes instantaneously from the value T0 to the
value Ts. Hence, body deformation in this case can be caused only by time-dependent heating or cooling of the
body surface. The solution of the problem reduces to solving the equations

ρcε
∂T

∂t
= λT

∂2T

∂x2
− 3KαTT

∂εkk
∂t

, (8)

ρ
∂2u

∂t2
=
∂σ11

∂x
(9)

with the boundary conditions

x = 0: T = Ts, u = 0 (or σ11 = 0),

x→∞: λT
∂T

∂x
= 0

(10)

and the initial condition

t = 0: T = T0, u = 0. (11)

In (1)–(11), u is the component of the displacement vector in the direction of the Ox axis and εkk = ε11 = ε = ∂u/∂x;
the remaining components of the displacement vector and strain tensor equal zero. The following relations are valid
for stress tensor components: σ11 6= 0, σ22 = σ33 6= 0, and σ12 = σ23 = σ31 = 0.
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Using relations (3), the problem can be reformulated in stresses or displacements:

ρcε
∂T

∂t
= λT

∂2T

∂x2
− 3KαTT

∂2u

∂t ∂x
, ρ

∂2u

∂t2
= (λ+ 2µ)

∂2u

∂x2
− 3KαT

∂T

∂x
.

Sometimes, it is convenient to write Eq. (9) in the form

ρ
∂2ε

∂t2
= (λ+ 2µ)

∂2ε

∂x2
− 3KαT

∂2T

∂x2
. (12)

In the classical theory of thermoelasticity [2], with allowance for smallness of the coupling coefficient

ω0 =
(3KαT )2

λ+ 2µ
T0

cερ
,

the heat-conduction equation is linearized at the temperature of the nondeformed state. Therefore, in most papers
that require temperature stresses to be evaluated, the effect of coupling is neglected. Solutions of the problems of
linear theory are well studied. These solutions are waves rapidly decaying with distance from the heated surface.
There are no solutions of the traveling wave type in the linear theory of thermoelasticity. Such solutions appear in
the coupled nonlinear theory [1].

2. Solution of the Traveling-Wave Type. For certainty, we assume that Ts > T0. Then, in the variables

θ =
T − T0

Ts − T0
, ξ =

x

x∗
, τ =

t

t∗
, e =

ε

ε∗
, (13)

where

x∗ =
√

æT t∗, ε∗ =
3KαT
λ+ 2µ

(Ts − T0), æT =
λT
ρcε

,

and the scale t∗ is of no principal importance, Eqs. (8) and (12) take the form

∂θ

∂τ
=
∂2θ

∂ξ2
− ω(θ + σ)

∂e

∂τ
,

∂2e

∂ξ2
− ∂2θ

∂ξ2
= α2 ∂

2e

∂τ2
,

where

ω =
(3KαT )2

λ+ 2µ
Ts − T0

cερ
, σ =

T0

Ts − T0
, α2 =

ρ

λ+ 2µ
æT
t∗
.

We consider solutions of the nonlinear system of equations, which are waves with a constant profile [6]
moving with a velocity V . We pass to the coordinate X = ξ − V τ , assuming the wave to move to the right. Then,
the shock-wave solution should satisfy the system

−V dθ

dX
=

d2θ

dX2
+ ω(θ + σ)V

de

dX
; (14)

d2e

dX2
− d2θ

dX2
= α2 d2e

dX2
(15)

and the conditions
X → −∞: θ = θ1 = 1,

X → +∞: θ = θ2 = 0.
(16)

Equation (15) is readily integrated. Taking into account the absence of disturbances at infinity (X → +∞),
we have

de

dX
=

1
1− (αV )2

dθ

dX
, e =

1
1− (αV )2

θ. (17)

Hence, the heat-conduction equation takes the form

−V
(

1 +
ω

1− (αV )2
(θ + σ)

) dθ
dX

=
d2θ

dX2
. (18)

Under the condition (αV )2 > 1 or V 2 > 1/α2, Eq. (18) coincides in form with the Burgers equation (see, e.g., [6])
written in self-similar variables. Indeed, using the quantities

U = ω−1((αV )2 − 1− ωσ), ν = ((αV )2 − 1)/(V ω),

166



we obtain the equation

−U dθ

dX
+ θ

dθ

dX
= ν

d2θ

dX2
, (19)

whose normal (non-self-similar) form is

∂θ

∂τ
+ θ

∂θ

∂ξ
= ν

∂2θ

∂ξ2
. (20)

Solutions of Eq. (19) in the form of a wave with a constant profile exist for V 2 > (1 + ωσ)/α2 or v2
n >

c2(1 + ω0), where vn = V
√

æT /t∗ is the wave velocity, c = [(λ+ 2µ)/ρ]1/2 is the velocity of sound, and ω0 ≡ ωσ.
The exact solution of the nonlinear equation (19) satisfying conditions (16) can be presented as

θ = 1− (1 + exp (−X/(2ν)))−1, U = 1/2,

which readily yields the velocity V for prescribed temperatures ahead of the wave front and behind it. This solution
is a weak shock wave. Since strains and stresses are linearly related to temperature, the strains and stresses in the
wave front satisfy the equation of the form (18) or (19). The Burgers equation has also an exact solution, which is
reduced to the ordinary linear heat-conduction equation by means of the Cole–Hopf substitution. This allows one
to study the evolution of the initial disturbance of a given form to a stationary profile. In particular, it is shown
[6] that the temperature remains continuous in passing through the shock wave in a heat-conducting medium. As
ν → 0, the solutions of Eq. (20) converge to shock-wave discontinuous solutions of the equation

∂θ

∂τ
+ θ

∂θ

∂ξ
= 0, (21)

satisfying the condition

U = (θ1 + θ2)/2, θ1 > U > θ2.

Similar conclusions were drawn for inelastic media in [7, 8] and other papers.
3. Combustion and Detonation. Let the medium have an internal source of heat due to an exothermal

chemical reaction. If only thermal stresses and strains are significant and the chemical transformation can be
described by the summarized scheme “solid reagent–solid product,” the equation of motion remains unchanged [see
(9)] and the one-dimensional heat-conduction equation acquires the form

ρcε
∂T

∂t
= λT

∂2T

∂x2
− 3KαTT

∂εkk
∂t

+Qrkrϕ1(y)ϕ2(T ). (22)

The degree of transformation y satisfies the kinetic equation

∂y

∂t
= krϕ1(y)ϕ2(T ). (23)

In the dimensionless variables (13) (with the substitution of T∗ for Ts) under the condition that the reaction
rate satisfies the Arrhenius law

ϕ2(T ) = exp (−Er/(RT )),

Eqs. (22) and (23) take the form

∂θ

∂τ
=
∂2θ

∂ξ2
− ω(θ + σ)

∂e

∂τ
+ θ−1

0 ϕ1(y)ϕ2(θ); (24)

∂y

∂τ
= ϕ1(y)ϕ2(θ), (25)

where

ϕ2(θ) = exp
(
−1 + σ

θ + σ

1
β

)
, β =

RT∗
Er

, θ0 =
T∗ − T0

Qr/(cερ)
, σ =

T0

T∗ − T0
.

Determining the scale temperature as the temperature of reaction products in the thermal theory of com-
bustion [9] T∗ = T0 + Qr/(cερ), we reduce the number of parameters. In this case, the time scale is conveniently
defined as t∗ = k−1

r .
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The solution of the traveling-wave type (wave with a constant profile) satisfies the system

−V dθ

dX
=

d2θ

dX2
+ ω(θ + σ)V

de

dX
+ ϕ1(y)ϕ2(θ); (26)

−V dy

dX
= ϕ1(y)ϕ2(θ) (27)

and (14), which is partly integrated. Using Eq. (17), we find

−V
(

1 +
ω

1− (αV )2
(θ + σ)

) dθ
dX

=
d2θ

dX2
+ ϕ1(y)ϕ2(θ). (28)

Integrating Eq. (28) with allowance for (27) and assuming that y = 0 in the undisturbed substance, we
obtain

−V
(

1 +
ωσ

1− (αV )2

)
θ − ωV

1− (αV )2

θ2

2
=

dθ

dX
− V y.

Assuming that X = ξ − V τ → −∞ and y = 1 in the region of reaction products, we obtain the quadratic equation
for the temperature of the disturbed substance

Bθ2
b + (2Bσ − 1)θb + 1 = 0, B = ω/(2((αV )2 − 1)), (29)

the number of its solutions depends on the parameters ω, V , α, and σ.
For B 6 0 [which is possible if V < α−1 or v2

n < (λ+ 2µ)/ρ], Eq. (29) has the only real solution. Each value
of B < 0 corresponds to only one temperature θb = θ1 < 1. For B → 0 (ω → 0), we have θb → 1.

For B > 0, the quadratic equation (29) has two real solutions: θb = θA and θb = θB . If α, ω, and σ are
fixed, each value of temperature θB corresponds to its own value of velocity V satisfying the condition V > α−1

or v2
n > (λ+ 2µ)/ρ. Two values of temperature (θA and θB) correspond to two stationary points of the heat-

conduction equation (28) as X → −∞ (in the region of reaction products), which are similar to the stationary
points of the Burgers equation [6], and the point A is a stable singular point. The exact solution of this problem
cannot be obtained.

An asymptotic analysis of problem (26), (27), (15) with conditions typical of the combustion theory, which
was performed in [10], also yields two types of solutions in the form of a traveling wave.

As ω → 0, the continuous solution of the first type (V < α−1) converges to the solution of the simplest
classical problem of the theory of solid-phase combustion, including Eqs. (27) and

−V dθ

dX
=

d2θ

dX2
+ ϕ1(y)ϕ2(θ) (30)

with the boundary conditions (16). These equations together with Eq. (15) form a system of equations of noncoupled
theory of thermoelasticity written in self-similar variables. According to the combustion theory [9], problem (30),
(27), (16) has only one solution. For each value of ω > 0, the solution is also unique; the wave with a constant
profile propagates with a velocity lower than the velocity of sound.

Solutions of the second type (V > α−1) are also continuous and are shock-wave solutions. These solutions
describe shock waves in a heat-conducting medium with an exothermal chemical reaction or solid-phase detonation.

Using the quantities U and ν, we write Eq. (28) as

−U dθ

dX
+ θ

dθ

dX
= ν

d2θ

dX2
+ νϕ1(y)ϕ1(θ). (31)

As ν → 0, which corresponds to V → α−1, continuous solutions of Eq. (31) converge to discontinuous shock-wave
solutions of Eq. (21).

The stresses and strains in the self-similar problem are completely determined by the temperature and degree
of transformation, which can easily be shown by using integrals of the equation of motion (17) and relations between
the stresses and strains in dimensionless variables. For the component of the stress tensor σ11 (in the direction of
front motion), we have

s = e− (θ + σ) = −σ + θ(αV )2/(1− (αV )2),

where s = σ11/σ∗ and σ∗ = 3KαT (T∗ − T0). (In the case of uniaxial deformation considered, three components
of the stress tensor differ from zero: σ11 and σ22 = σ33.) In the noncoupled problem, the stress (strain) wave
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with a constant profile, if it is not amplified by an external mechanical action, always runs with a velocity of the
wave of chemical transformation, which is lower than the velocity of sound. In this case, the detonation regime
of transformation cannot exist notwithstanding the arguments of [11–13]. In the coupled problem (ω 6= 0), there
exist two types of waves with a constant profile. The first (subsonic) wave is the consequence of the nonlinear
dependence of the rate of chemical heat release on temperature (nonlinear interaction of heat conduction and
chemical transformation). The second wave exists due to energy transfer by the wave of mechanical disturbances
(“hydrodynamic” transfer of energy) or due to nonlinear interaction of the heat-transfer processes and propagation
of mechanical disturbances. The linearized system of equations has no self-similar solutions of this kind.

The “nonuniqueness” of the solution of the simplest coupled problem of solid-phase combustion is demon-
strated in [10] by an example of a stepwise heat-release function (in this case, exact solutions of the problem can
be found). The wave velocity V is the eigenvalue of the problem of solid-phase combustion (27), (30); system (15),
(26), (27) has eigenvalues of two types: V1 < α−1 and V2 > α−1.

Note, for ϕ1(y) = 1, Eq. (28) is a particular case of the Lienard equation whose solution exists and is unique
for fixed parameters, including the prescribed value of V [14]. The type of the solution depends significantly on the
function at the first derivative, including the values of parameters.

Similar results are obtained by using the generalized Fourier law (5) with a finite time of heat-flux relax-
ation [15] and also in analyzing the solution of the coupled problem with the relations of the Maxwellian model of
a viscoelastic body are used instead of the Duhamel–Neumann relations (see, e.g., [16, 17]).

4. Changes in Volume During Solid-Phase Transformation. The model of solid-phase transformation
considered above does not take into account the changes in properties, which should affect physical parameters.
A real detonation wave has a transitional zone where the initial substance transforms into detonation products.
Since the transitional zone is small as compared to the specimen size and the residence time of particles in this
zone is also small, the transitional zone in solving many problems is replaced by a strong discontinuity [18]. Then,
detonation can be defined as a hydrodynamic wave process of propagation of an exothermal reaction zone over
the substance with a supersonic velocity. A similar approach is used in modeling slow combustion processes: the
velocity of front motion is determined by the velocity of chemical heat release in the narrow reaction region; in the
limit, the latter is a surface separating reagents and products whose properties are different in the general case.
Heating of the substance ahead of the reaction front and, hence, its propagation are ensured by heat conduction.
In the present work, it is of interest to consider the process of propagation of the chemical reaction zone over the
substance in which the substance properties are continuously changed in the course of transformation of the initial
substances into reaction products both in the case of slow and “explosive” transformation. Various models can be
constructed to describe these processes, including those that do not imply low strains. In this case, it is necessary
to use continuity equations and, possibly, nonlinear equations of state in reagents, products, and reaction zone.

Within the framework of the above approximation of low strains, displacements, and velocities and the linear
thermal equation of state [Eq. (3)], we try to take into account the basic characteristics of “explosive” transformation:
expansion of the substance, which is accompanied by an increase in pressure, and excitation of shock waves.

Not neglecting the coupled character of different processes (in our case, the processes of heat transfer and
deformation), i.e., the “small” term in Eq. (1) or (6), we take into account that the components of the stress
tensor σij in each particle in an elastic body are functions of the components of the strain tensor εij , temperature,
and other physicochemical parameters [19]. It can easily be shown that, if other parameters are described by scalar
functions, such a relation for an isotropic body has the form (7), where the function w depends on temperature and
concentrations of reagents and products [4, 20]. Assuming further that the chemical reaction can be described by
the simplest global scheme A→ B, we find

w = 3[αT (T − T0) + (αB − αA)(y − y0)]. (32)
Here αB and αA are the coefficients of “concentrational expansion” of the product and reagent, which are determined
in thermodynamics in the same manner as the thermal expansion coefficient and are directly related to partial specific
volumes of the substances participating in the reaction [20]. This does not eliminate, however, the dependence of
physicochemical properties on temperature and degree of transformation. Using Eq. (7) (or similar equations written
in increments), Eq. (32), continuity equation, and usual equations of motion in the form

ρ
dv

dt
= ∇ · σ̂ + ρF , (33)

where v is the velocity vector, we obtain the model of an elastic body with a solid-phase reaction proceeding in it.
In the case of small strains, accelerations, and displacements, the equations of motion remain in the form (2) and
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the continuity equation is not needed. This model of the elastic body is readily generalized to an arbitrary number
of components and stages of chemical reactions with the use of additional thermodynamic relations and also to the
case of large strains.

The self-similar solution (solution in the form of a traveling wave) for system (22), (23), (9) with additional
relations (7) and (32) is constructed in the same manner as in Sec. 3. The one-dimensional equation of motion in
terms of strains becomes

ρ
∂2ε

∂t2
= (λ+ 2µ)

∂2ε

∂x2
− 3K

(
αT

∂2T

∂x2
+ (αB − αA)

∂2y

∂x2

)
.

In the dimensionless variables (13), we have Eqs. (24), (25), and

∂2e

∂ξ2
−
(∂2θ

∂ξ2
+ g

∂2y

∂ξ2

)
= α2 ∂

2e

∂τ2
,

where g = (αB − αA)/(αT (T∗ − T0)) is a dimensionless parameter characterizing the reaction proceeding in the
solid substance. For g > 0, the reaction proceeds with an increase in volume; for g < 0, the reaction proceeds with
a decrease in volume; for g = 0, the specific volume remains unchanged in the course of the reaction.

In a stationary wave moving to the right with a velocity V , the strains are related to temperature and degree
of transformation by the expression

e = [θ + g(y − y0)]/[1− (αV )2].

In this case, the heat-conduction equation takes the form

−V
(

1 +
ω(θ + σ)

1− (αV )2

) dθ
dX

=
d2θ

dX2
+ ϕ1(y)ϕ2(θ)

(
1− ω(θ + σ)

1− (αV )2
g
)
. (34)

Using the quantities U and ν, we can easily show that the solutions of Eq. (34) converge to discontinuous solutions
of the shock-wave equation (21) as ν → 0.

Exact solutions of this problem could not be obtained yet. Using the method of matched asymptotic
expansions (for the zero-order reaction), it can be shown [10] that models that take into account the change in
volume in the course of transformation admit two types of solutions: subsonic and supersonic (slow combustion
regime and solid-phase detonation). These solutions are continuous. The question on the number of these or those
regimes remains open.

It should be noted that the coupled model of solid-phase transformation also admits the existence of self-
similar solutions if the chemical reaction is endothermal (in this case, there is the minus sign at the second term
in Eq. (34) and Qr is replaced by |Qr| in the definition of scale temperature). The overall exoeffect in the reaction
zone is caused either by the fact that the endothermal reaction leads to an increase in volume, and there occurs
energy release in the detonation wave due to the work of stresses or by the fact that the endothermal reaction
proceeds with a decrease in volume, heat release in the slow wave of solid-phase combustion exceeds the endoeffect
of transformation.

5. Generalization of the Simplest Model to the Case of a Compressible Medium. The above-
considered coupled models of solid-phase combustion are valid if the medium is assumed to be incompressible, i.e.,
∇·v = 0. We assume that strains, accelerations, and displacements are not small. In system (6), (23), (33), partial
derivatives with respect to time should be replaced by total derivatives d/dt. We supplement these equations by
the continuity equation

dρ

dt
+ ρ∇ · v = 0

and the linear relation between the components of stress and strain tensors written in increments:

dσij = 2µdεij + δij(λ dεkk −K dw).

The one-dimensional system of equations (in the case of one chemical reaction proceeding in the substance) takes
the form

ρcε
dT

dt
= λT

∂2T

∂x2
− 3ραTT

d

dt

(K
ρ
ε
)

+Qrkrϕ1(y)ϕ2(T ),

dy

dt
= krϕ1(y)ϕ2(T ), ρ

dv

dt
=
∂σ11

∂x
,

170



dρ

dt
+ ρ

dv

dx
= 0,

dσ11

dt
= (λ+ 2µ)

dε

dt
−K dw

dt
,

because εkk ≈ ε11 in the one-dimensional approximation. The approximation K/ρ ≈ const is valid for most
materials. Hence, in the coordinate system fitted to the reaction front moving to the right with a velocity vn, we
have

−mcε
dT

dx
= λT

d2T

dx2
+ 3αTT

K

ρ
m
dε

dx
− Qr

ρ
m
dy

dx
,

−m dy

dx
= ρkrϕ1(y)ϕ2(T ), −m dv

dx
=
dσ11

dx
, (35)

−m dρ

dx
= −ρ2 dv

dx
,

dσ11

dx
= (λ+ 2µ)

dε

dx
−K dw

dx
,

where m = ρ(vn − v) is the mass burning rate and the function w is calculated by Eq. (32).
In the case considered, we can assume that εkk ≈ ε ≈ ρ0/ρ− 1, which allows us to close and partly integrate

system (35) with specified conditions in the reagents (x → +∞) and the condition of decay of disturbances in
reaction products (x→ −∞). Indeed, since we have

dε

dx
= −ρ0

ρ2

dρ

dx
,

then the third and fifth equations of system (35) yield

m
dv

dx
=
ρ0

ρ2
(λ+ 2µ)

dρ

dx
+K

dw

dx
.

Using the continuity equation [fourth equation of system (35)], we obtain

dv

dx
= − mK

m2 − ρ0(λ+ 2µ)
dw

dx
. (36)

Similarly, we have

1
ρ2

dρ

dx
=

K

m2 − ρ0(λ+ 2µ)
dw

dx
. (37)

In this case, the heat-conduction equation is replaced by the equation

−mcε
dT

dx
= λT

d2T

dx2
− 3αTTmK2ρ0

ρ(m2 − ρ0(λ+ 2µ))
dw

dx
− Qr

ρ
m
dy

dx
. (38)

In the dimensionless variables θ, ρ̄ = ρ/ρ0, v̄ = v/
√

æT /t∗, and X, Eqs. (36)–(38) yield

dv̄

dX
= − V γ

(αV )2 − 1

( dθ
dX

+ g
dy

dX

)
; (39)

1
ρ̄2

dρ̄

dX
=

γ

(αV )2 − 1

( dθ
dX

+ g
dy

dX

)
; (40)

−V
(

1− ω(θ + σ)
(αV )2 − 1

ρ̄−1
) dθ
dX

=
d2θ

dX2
+
(

1− ω(θ + σ)
(αV )2 − 1

ρ̄−1
)
ϕ1(y)ϕ2(θ), (41)

where

ω =
(3αTK)2

λ+ 2µ
T∗ − T0

cερ0
, V =

m

ρ0

√
æT /t∗

, α2 =
ρ0

λ+ 2µ
æT
t∗
, γ =

3KαT (T∗ − T0)
λ+ 2µ

.

The parameter γ is the product of the thermal strain αT (T∗ − T0) and the ratio of velocities of the bulk and
longitudinal mechanical waves 3K/(λ+ 2µ).

Assuming that γ ≈ const and ω ≈ const, from (39) and (40), with allowance for the condition of the absence
of disturbances in the reagents, we find

ρ̄ =
1

1 + γ(θ + gy)/(1− (αV )2)
, v̄ = − γV

(αV )2 − 1
(θ + gy),
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i.e., density and velocity are functions of temperature and degree of transformation.
Hence, we have

−V
[
1− ω(θ + σ)

(αV )2 − 1

(
1 +

γ(θ + gy)
(αV )2 − 1

)] dθ
dX

=
d2θ

dX2
+ F (θ, y), (42)

where

F (θ, y) =
(

1 +
ω(θ + σ)

(αV )2 − 1
g
)
ϕ1(y)ϕ2(θ)

is an effective function of chemical heat release, which, as above, can have an arbitrary sign. Further solving of
system (40), (27) with previous conditions seems to be possible with the use of asymptotic or numerical methods.
Let us analyze these equations under some simplifying assumptions.

For g = 0 and ϕ10(y) = 1, we obtain the Lienard equation.
For V � α−1, we obtain the usual problem of the combustion theory, in which heat capacity depends on

temperature but the heat-release function has a more complicated form than in using the Arrhenius dependence.
The problem includes Eq. (27) and heat-conduction equation in the form

−V [1 + ω(θ + σ)(1− γ(θ + gy))]
dθ

dX
=

d2θ

dX2
+ F (θ, y),

where F (θ, y) = [1− ω(θ + σ)g]ϕ1(y)ϕ2(θ), with conditions typical of such problems:
X → +∞: θ = 0, y = 0,

X → −∞: θ = θb, y = 1.
In contrast to simpler models, the sought quantity here is the mass burning rate rather than the linear

velocity of the front. An approximate analytical solution can be found in the same manner as in [21].
For V > α−1, it is convenient to present Eq. (42) in another form. Using the quantities U and ν, we write

−U dθ

dX
+ (a0 + a1θ + a2θ

2)
dθ

dX
= ν

d2θ

dX2
+ νF (θ, y), (43)

where
a0 =

gσγ

(αV )2 − 1
y, a1 = 1 +

σ + gy

(αV 2)− 1
γ, a2 =

γ

(αV )2 − 1
.

For ν → 0, (43) yields the equation

−U dθ

dX
+ C(θ)

dθ

dX
= 0, C(θ) = a0 + a1θ + a2θ

2,

whose normal (non-self-similar) form is the nonlinear equation [generalization of (21)]
∂θ

∂τ
+ C(θ)

∂θ

∂ξ
= 0. (44)

Studying this equation, we can obtain the main properties of nonlinear hyperbolic waves.
For F (θ, y) = 0, Eq. (43) yields a self-similar form of the shock-wave equation [generalization of (20)]:

∂θ

∂τ
+ C(θ)

∂θ

∂ξ
= ν

∂2θ

∂ξ2
. (45)

As ν → 0, continuous solutions of Eq. (45) converge to discontinuous solutions of Eq. (44).
Apparently, as in the case of simpler models, for ν 6= 0 and F (θ, y) 6= 0, one can obtain solutions of Eq. (43)

that describe a stationary wave of solid-phase detonation. Such a generalization is also possible for the coupled
model of solid-phase combustion, taking into account failure in the reaction front [22, 23].

Conclusions. Thus, the regime of solid-phase transformation in the form of a solid-phase detonation wave
is typical of a system capable of transformation, as well as the regime of slow solid-phase combustion. Yet, some
issues remain unclear. For instance, under which conditions is this or that transformation regime realized and which
fast (and slow) regimes are stable to two-dimensional disturbances? Some results of stability study can be found
in [24, 25]. No analytical solutions have been found for most models proposed (except for the simplest variants).
The kinetics of chemical reactions in the solid phase and the kinetics of the process of damage accumulation (failure)
require further study; a detailed analysis of transformation models in inelastic media is also necessary.

Using coupled models of solid-phase combustion, one can describe transformations that can proceed in the
solid phase in various regimes depending on reaction-initiation conditions and reagent structure. For instance, in
two regimes (fast and slow), there can occur low-temperature radical reactions in polycrystalline matrices, solid-
phase polymerization, solid-phase decomposition of the initiating explosives, etc. Experimental data obtained by
various authors, which confirm the possibility of such phenomena, are analyzed in some papers cited above.
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